- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Beyer, K. (1)
-
Bonilla, E. (1)
-
Catacora-Rios, M. (1)
-
Chan, M_Y-H (1)
-
Furnstahl, R_J (1)
-
Giuliani, P (1)
-
Giuliani, P. (1)
-
Godbey, K (1)
-
Godbey, K. (1)
-
Kejzlar, V (1)
-
Nazarewicz, W (1)
-
Nunes, F_M (1)
-
Odell, D. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
One can improve predictability in the unknown domain by combining forecasts of imperfect complex computational models using a Bayesian statistical machine learning framework. In many cases, however, the models used in the mixing process are similar. In addition to contaminating the model space, the existence of such similar, or even redundant, models during the multimodeling process can result in misinterpretation of results and deterioration of predictive performance. In this paper we describe a method based on the principal component analysis that eliminates model redundancy. We show that by adding model orthogonalization to the proposed Bayesian model combination framework, one can arrive at better prediction accuracy and reach excellent uncertainty quantification performance. Published by the American Physical Society2024more » « less
-
Odell, D.; Giuliani, P.; Beyer, K.; Catacora-Rios, M.; Chan, M_Y-H; Bonilla, E.; Furnstahl, R_J; Godbey, K.; Nunes, F_M (, Physical Review C)
An official website of the United States government
